

DRIVEN BY SCIENCE

FOCUSED ON LIFE

May 2022

Forward looking statements

Certain statements included in this presentation (this "Presentation") that are not historical facts are forward-looking statements for purposes of the safe harbor provisions under the United States Private Securities Litigation Reform Act of 1995. Forward-looking statements are sometimes accompanied by words such as "believe," "may," "will," "estimate," "continue," "anticipate," "intend," "expect," "should," "would," "plan," "predict," "potential," "seem," "seek," "future," "outlook" and similar expressions that predict or indicate future events or trends or that are not statements of historical matters. These forward-looking statements include, but are not limited to, statements regarding the expected future clinical trial initiation, data announcements, and clinical candidate selections and the related timing. These statements are based on various assumptions, whether or not identified in this Presentation, and on the current expectations of the management team of Nuvation Bio and are not predictions of actual performance. These forward-looking statements are subject to a number of risks and uncertainties that may cause actual results to differ from those anticipated by the forward-looking statements, including but not limited to the challenges associated with conducting drug discovery and initiating or conducting clinical trials due to, among other things, difficulties or delays in the regulatory process, enrolling subjects or manufacturing or acquiring necessary products; the emergence or worsening of adverse events or other undesirable side effects; risks associated with preliminary and interim data, which may not be representative of more mature data; and competitive developments. Risks and uncertainties facing Nuvation Bio are described more fully in its Form 10-Q expected to be filed with the SEC on or about May 9, 2022, under the heading "Risk Factors," and other documents that Nuvation Bio has filed or will file with the SEC. You are cautioned not to place undue reliance on the forward-looking statements, which speak only as of the date of this Presentation. Nuvation Bio disclaims any obligation or undertaking to update, supplement or revise any forward-looking statements contained in this Presentation.

Pipeline of wholly-owned candidates tackling the greatest unmet needs in oncology

PROGRAM	POTENTIAL INDICATION(S)		CURRENT STAGE				ANTICIPATED MILESTONES &
PROGRAM			PRECLINICAL	PHASE 1	PHASE 2	PHASE 3	RECENT UPDATES
NUV-422 (CDK 2/4/6)	rGBM	NUV-422					Phase 1 Dose Escalation Data by Year End 2022; Pre-surgical Study Initiation Mid-2022; Phase 2 Initiation by Year End 2022
	aBC	NUV-422					Phase 2 Initiation by Year End 2022
	aBC Brain Mets	NUV-422					Phase 2 Initiation by Year End 2022
	aBC	NUV-422 + Fulvestrant					Phase 1b Initiation by Year End 2022
	mCRPC	NUV-422					Phase 2 Initiation by Year End 2022
		NUV-422 + Enzalutamide					Phase 1b Initiation by Year End 2022
	Advanced Solid Tumors	NUV-868					First Patient Dosed in Phase 1 Dose Escalation in Q1 2022
NUV-868 (BET)	Ovarian, TNBC, Pancreatic & mCRPC	NUV-868 + Olaparib					Phase 1b Initiation by Year End 2022
	mCRPC	NUV-868 + Enzalutamide					Phase 1b Initiation by Year End 2022
Drug-Drug Conjugate Platform	Solid Tumors						Clinical Candidate Selection by Year End 2022

NUV-422 | CDK 2/4/6i

rGBM

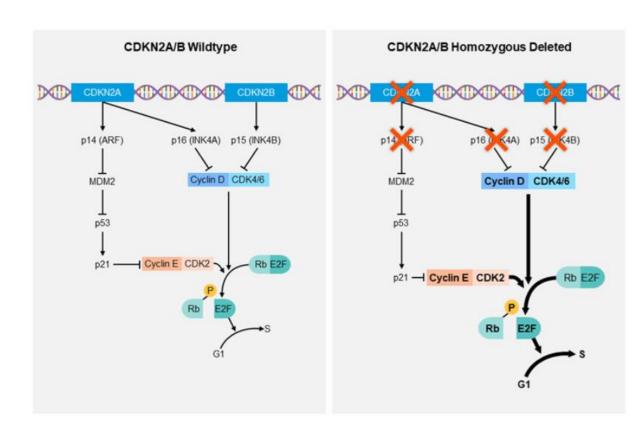
Phase 2 Initiation by Year End 2022

HR+ aBC

Phase 2 Initiation by Year End 2022

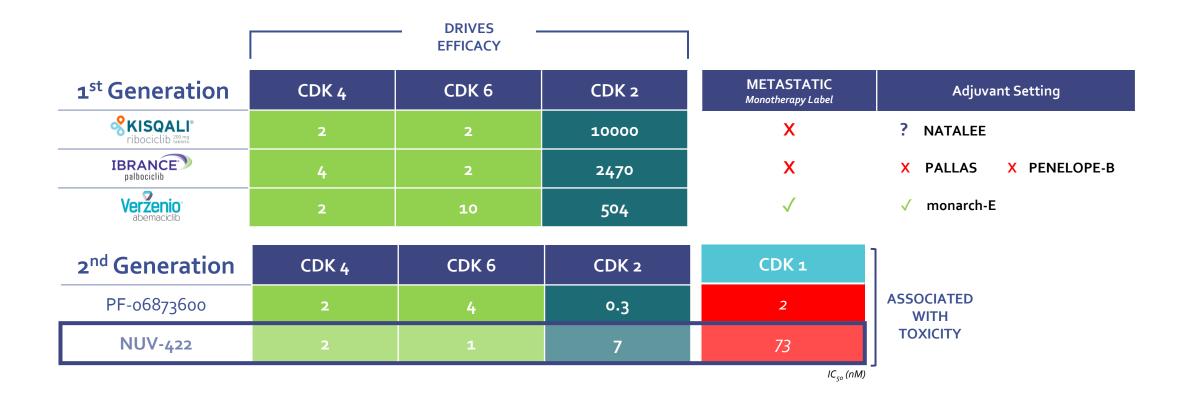
mCRPC

Phase 2 Initiation by Year End 2022



Nuv-422 selectively targets CDK2 in addition to CDK4/6 and may prevent or reverse resistance to approved CDK4/6i

CDK₂ Drives Resistance to CDK₄/6 Inhibitors


TUMOR GROWTH SIGNALING No Pharmacological Intervention CDK4/6 Inhibitors TUMOR GROWTH SIGNALING In Presence of First Generation CDK4/6 CDK4/6 CDK4/6 CDK4/6

CDKN2A Deletion or Alterations Commonly Drive Cancer Growth Through CDK2/4/6

NUV-422 is a potent CDK2/4/6 inhibitor

NUV-422-02 phase 1/2 monotherapy study

Phase 1 Dose Escalation

Primary Objective: Safety, Tolerability, RP2D

HGG, HR+/HER2- aBC, and mCRPC

Including Pre-surgical study in rGBM, and Dose Backfill*

Phase 1 Dose Escalation Data By Year End

Phase 2 in Multiple Tumor Types Primary Objective: ORR & DOR

RECURRENT GBM

COHORT 1: Up to 40 pts with measurable disease

HR+/HER2- aBC (POST CDK4/6i)

COHORT 2: Up to 40 pts with measurable disease**
COHORT 4: Up to 40 pts with active brain mets

mCRPC (POST ANDROGEN RECEPTOR-DIRECTED THERAPY & TAXANE)

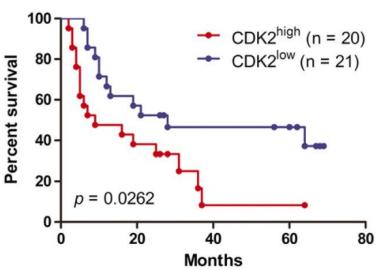
COHORT 3: Up to 40 pts with measurable disease or rising PSA


DOR: Duration of Response
ORR: Objective Response Rate
PSA: Prostate-Specific Antigen
RP2D: Recommended Phase 2 Dose

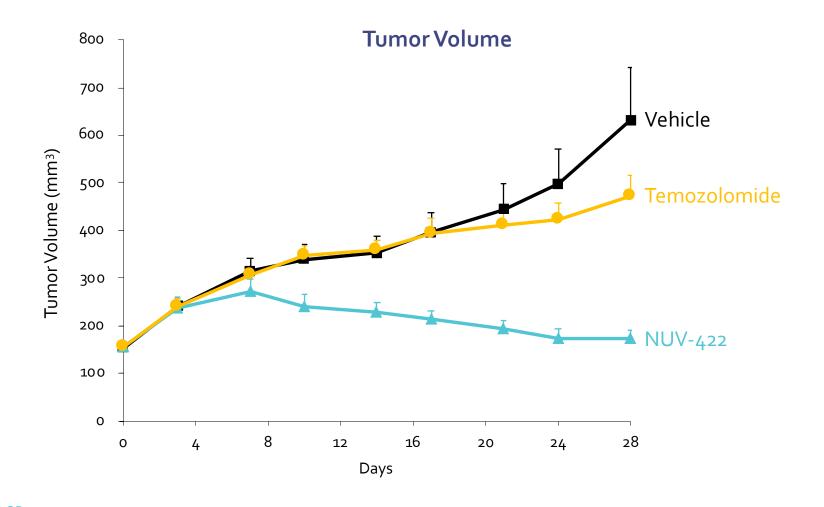
Glioblastoma

CDKN2A deletion and CDK2 overexpression is associated with worse survival in HGG, highlighting the rationale for a CDK2/4/6i

CDKN2A Deletion is Associated with Worse Survival¹


■ ■ CDKN2A wt without MVP and or necrosis

CDKN2A wt with MVP and or necrosis


■ ■ □ CDKN₂A -/- without MVP and or necrosis

CDKN₂A -/- with MVP and or necrosis

CDK2 Expression is Associated with Lower Overall Patient Survival²

NUV-422 demonstrates anti-tumor activity in a xenograft model of GBM

NUV-422-02 rGBM monotherapy phase 1/2

Phase 1 Dose Escalation

Primary Objective: Safety, Tolerability, RP2D

HGG, including rGBM

Dose Escalation & Dose Backfill

Pre-surgical Substudy: rGBM

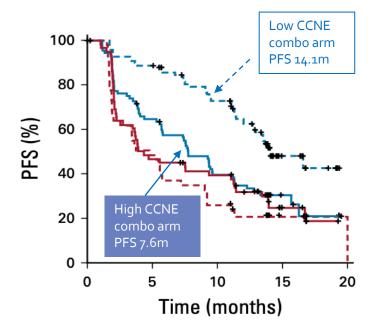
PRIMARY OBJECTIVE: PK of NUV-422 in resected tumor tissue
Up to 30 patients randomized (2:1)

Phase 1 Dose Escalation Data By Year End

Phase 2 Dose Expansion
Primary Objective: ORR & DOR

RP₂D

Recurrent GBM
Up to 40 patients



Breast Cancer

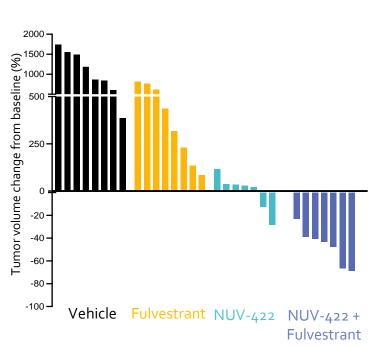
NUV-422 inhibits growth of palbociclib-resistant ER+ breast cancer cells with high CDK2/Cyclin expression

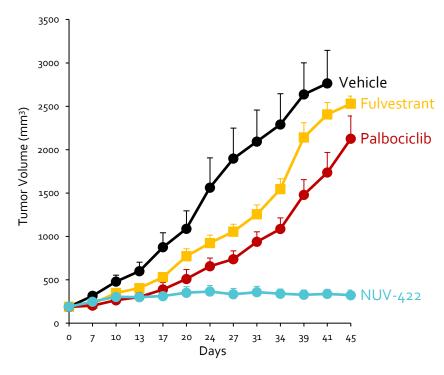
Cyclin E Predicts Resistance to Palbociclib

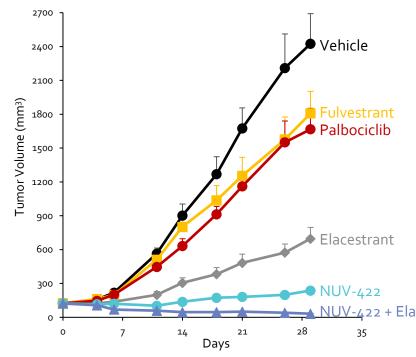
NUV-422 has Similarly Strong Potency in Palbociclib-sensitive and Palbociclib-resistant Cells

Cycli	n E1
PalboS	PalboR
	4
CD	K2
PalboS	PalboR
-	-

	Proliferation Inhibition IC50 (nM)		
Compound	Palbociclib-sensitive cells	Palbociclib-resistant cells	
Cisplatin	11580	10070	
Palbociclib	288	1401	
NUV-422	229	325	




NUV-422 shows activity across ER+ breast cancer xenograft models


ER+ Metastatic Breast Cancer Xenograft

ER+, CDK4/6i- and Fulvestrant-resistant Patient-derived Breast Cancer Xenograft Harboring a Y537S ESR1 Mutation

ER+ Fulvestrant-resistant Patientderived Breast Cancer Xenograft Harboring a Y537S ESR1 mutation

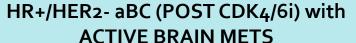
NUV-422 30 mg/kg PO QD

NUV-422-02 2L+ aBC monotherapy phase 1/2

Phase 1 Dose Escalation

Primary Objective: Safety, Tolerability, RP2D

HR+/HER2- aBC 2L+


Dose Escalation & Dose Backfill

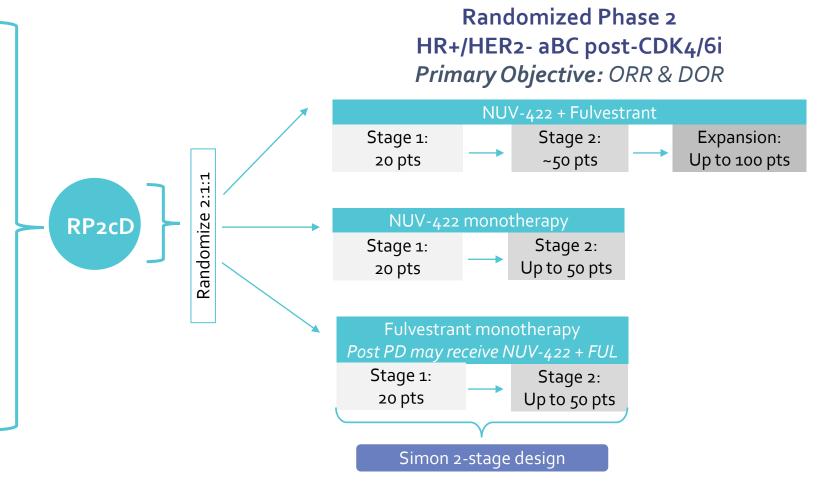
Phase 1 Dose Escalation Data By Year End

Phase 2 Dose Expansion
Primary Objective: ORR & DOR

HR+/HER2- aBC (POST CDK4/6i)

COHORT 2: Up to 40 pts with measurable disease*

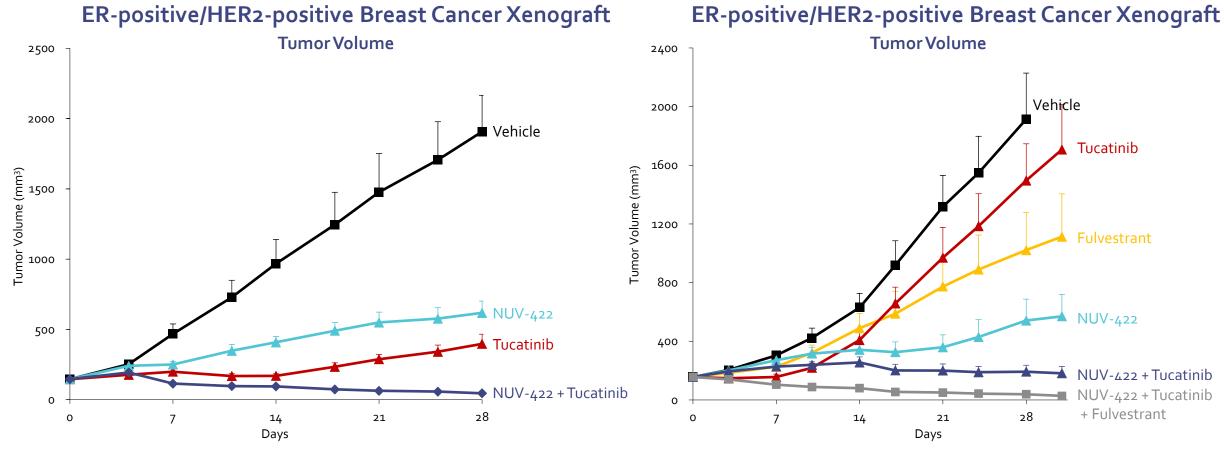
COHORT 4: Up to 40 pts with measurable brain lesion


NUV-422-03 phase 1b/2 aBC study NUV-422 in combination with fulvestrant

Phase 1b Safety Run-in
HR+/HER2- aBC
Primary Objective: Safety; RP2cD

HR+/HER2- aBC post-CDK4/6i

NUV-422 Dose Escalation + Fulvestrant (SOC Dose)


Phase 1b Initiation By Year End

PD: Progressive Disease RP2cD: Recommended Phase 2 Combination Dose FUL: Fulvestrant

Additional xenograft data suggests broad potential for NUV-422 in other subtypes of breast cancer

Prostate Cancer

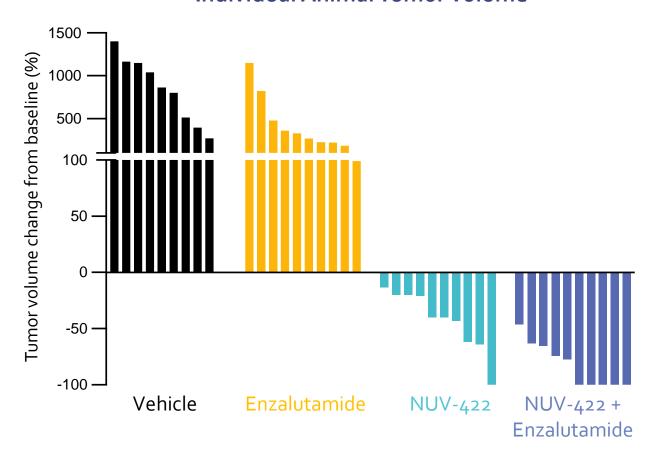
Prostate cancer is a hormone driven cancer similar to breast cancer, where CDK inhibitors are approved

Role of CDK2/4/6 in mCRPC

Crosstalk between cell cycle and AR pathways highlights the rationale for targeting CDK

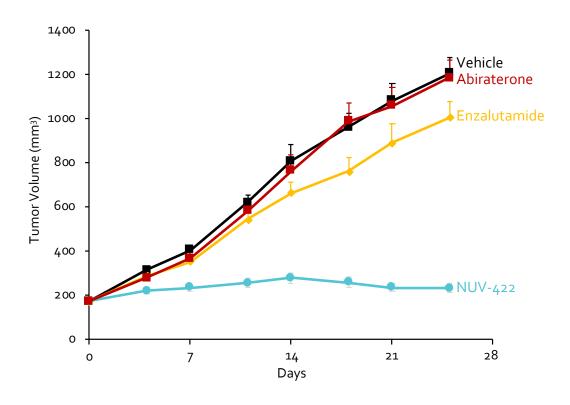
CDK₂ expression increases with progression of prostate cancer and is associated with recurrence²

CDK₂ can phosphorylate and activate AR³


Critical role of CDK2 as an escape mechanism for G1/S cell cycle targeting provides rationale for targeting CDK2 in addition to CDK4/6¹

²Yin, et al 2018

NUV-422 causes tumor regression in an enzalutamide-resistant patient-derived prostate cancer xenograft model


Individual Animal Tumor Volume

NUV-422 shows activity in a prostate cancer model resistant to Standard of Care

Prostate Cancer AR-V7 Xenograft that is Resistant to Standard of Care Anti-androgen Therapies

NUV-422-02 mCRPC monotherapy phase 1/2

Phase 1 Dose Escalation

Primary Objective: Safety, Tolerability, RP2D

Recurrent/Refractory mCRPC

Dose Escalation & Dose Backfill

Phase 1 Dose Escalation Data By Year End

Phase 2 Dose Expansion

Primary Objective: ORR & DOR; PSA Response Rate

mCRPC (POST AR-DIRECTED THERAPY & TAXANE)

COHORT 3: Up to 40 pts with measurable disease or rising PSA

NUV-422-04 phase 1b/2 study in mCRPC: NUV-422 in combination with enzalutamide

Phase 1b Safety Run-in mCRPC
Primary Objective: Safety; RP2cD

mCRPC

NUV-422 Dose Escalation + Enzalutamide (SOC Dose)

Phase 1b Initiation Mid-2022

Phase 2

mCRPC: Measurable & Non-measurable Disease Primary Endpoint: ORR & DOR; PSA Response Rate

Overall Cohort

NUV-422 RP2cD + Enzalutamide (n=minimum of 40)

Measurable Disease Subcohort (n=20)

RP2cD: Recommended Phase 2 Combination Dose

SOC: Standard of Care DOR: Duration of Response

ORR: Objective Response Rate

Overall Cohort includes pts with measurable and non-measurable mCRPC

NUV-868 | BETi

Advanced Solid Tumors

Ovarian, TNBC, Pancreatic, mCRPC Q1 2022 First Patient Dosed

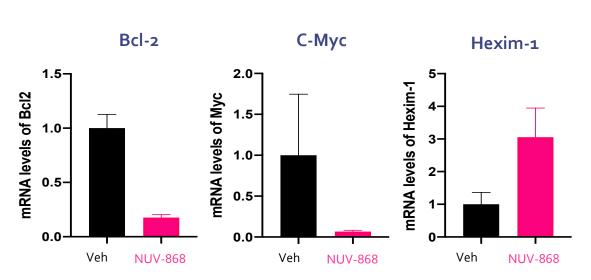
Phase 1b Initiation by Year End 2022

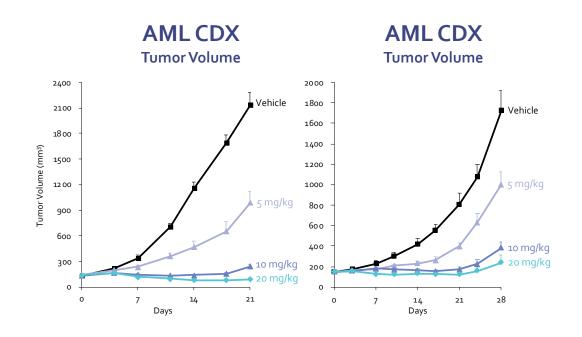
Rationale for BET inhibitors in solid tumors

- The BET family of proteins play a critical role in gene regulation and are often altered in human cancers^{1,2}
- BET proteins can induce the expression of oncogenes, e.g. MYC, an oncogene that cannot be targeted directly with a drug¹
- The BET proteins contain two bromodomains (BD1 and BD2)
 - To date, BET inhibitors have largely focused on targeting both domains (BD1 and BD2)
 - Non-selective BD1/2-inhibitors in development have been associated with tolerability issues, potentially due to BD1 inhibition³
- Several BET inhibitors have advanced to clinical studies, but development has been limited due to PK, toxicity, and/or lack of efficacy⁴
 - Potential strategies to overcome development challenges include investigating BET inhibitors in combination and developing BET inhibitors with BD2 selectivity

NUV-868 is a highly selective BD2 vs BD1 BET inhibitor

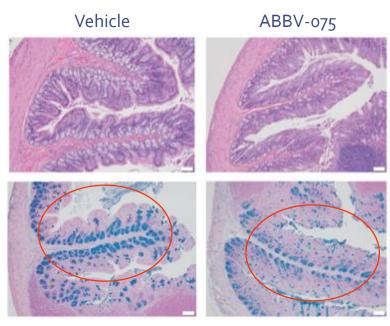
	BRD4 Affinity⁵			
	BD ₂	BD1	Selectivity	
NUV-868	2	2920	1460x	
ABBV-744 ⁶	1.05	340	324	
PLX-2853 ⁷	Modest BD2 selectivity			
CPI-0610 ³	17	85	5×	
ABBV-075 ¹	3	11	3.7X	
MK-8628/OTX-015 ⁸	17	26	1.5X	
BI-894999 ⁹	41	5	0.1X	
ZEN-369410	Non-selective			

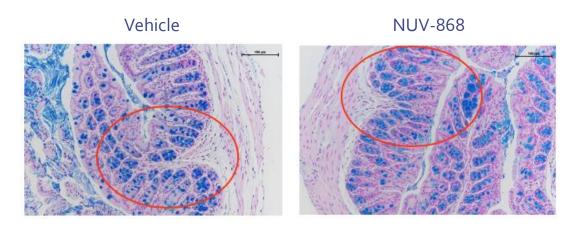

LESS BD2 SELECTIVE


MORE BD2 SELECTIVE

NUV-868 inhibits tumor growth by downregulating tumor promoting genes BCL-2 and MYC and upregulating tumor suppressor Hexim-1

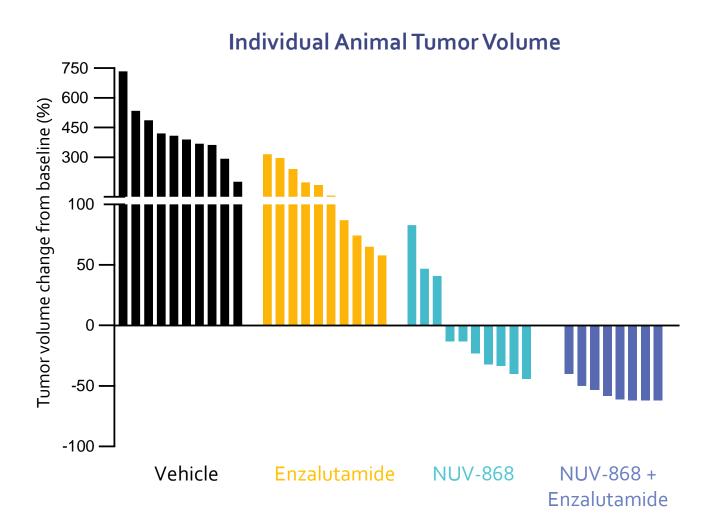
Pharmacodynamic Markers




High selectivity for BD2 over BD1 significantly reduces the gut toxicity observed with other non-selective BET inhibitors

ABBV-075 (Dual BD1 / BD2)

× A non-selective inhibitor (ABBV-075) leads to marked reduction in rat small intestine goblet cells¹


NUV-868 (BD2 Selective) May Avoid GI Toxicity

Treatment of mice for 10 days with BD2 selective compound NUV-868 shows no evidence of goblet cell loss

NUV-868 causes tumor reductions in an enzalutamide-resistant patient-derived prostate cancer xenograft model

BET inhibitors (BRD4) cause sensitization of HR-proficient cancers to PARP-inhibitors

SCIENCE TRANSLATIONAL MEDICINE | RESEARCH ARTICLE

CANCER

Repression of BET activity sensitizes homologous recombination-proficient cancers to PARP inhibition

Lu Yang,^{1,2}* Youyou Zhang,¹* Weiwei Shan,^{1,3} Zhongyi Hu,¹ Jiao Yuan,¹ Jingjiang Pi,¹ Yueying Wang,¹ Lingling Fan,^{1,3} Zhaoqing Tang,¹ Chunsheng Li,^{1,4} Xiaowen Hu,^{1,4} Janos L. Tanyi,⁴ Yi Fan,⁵ Qihong Huang,⁶ Kathleen Montone,⁷ Chi V. Dang,⁸ Lin Zhang^{1,4,8†}

BRD4 Inhibition Is Synthetic Lethal with PARP Inhibitors through the Induction of Homologous Recombination Deficiency

Chaoyang Sun,^{1,2,10,*} Jun Yin,^{2,3} Yong Fang,^{1,2} Jian Chen,^{2,4} Kang Jin Jeong,² Xiaohua Chen,² Christopher P. Vellano,² Zhenlin Ju,⁵ Wei Zhao,² Dong Zhang,² Yiling Lu,² Funda Meric-Bernstam,⁶ Timothy A. Yap,⁶ Maureen Hattersley,⁷ Mark J. O'Connor,⁸ Huawei Chen,⁷ Stephen Fawell,⁷ Shiaw-Yih Lin,² Guang Peng,⁹ and Gordon B. Mills²

Sun et al also demonstrated that BRD4i can re-sensitize PARPiresistant models to PARPi

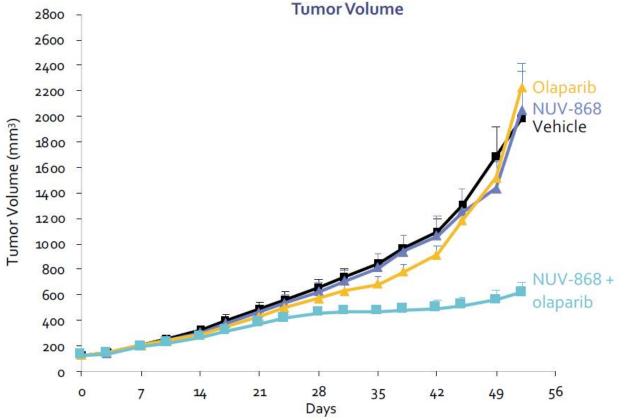
HHS Public Access

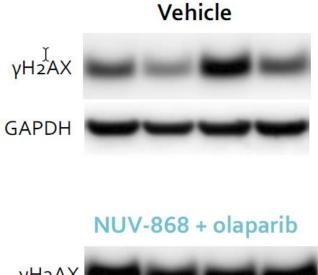
Author manuscript

Cell Rep. Author manuscript; available in PMC 2017 December 27.

Published in final edited form as:

Cell Rep. 2017 December 19; 21(12): 3398–3405. doi:10.1016/j.celrep.2017.11.095.


BET bromodomain inhibition synergizes with PARP inhibitor in epithelial ovarian cancer


Sergey Karakashev^{1,#}, Hengrui Zhu^{1,#}, Yuhki Yokoyama^{1,#}, Bo Zhao¹, Nail Fatkhutdinov^{1,2}, Andrew V. Kossenkov³, Andrew J. Wilson⁴, Fiona Simpkins⁵, David Speicher^{2,6}, Dineo Khabele⁷, Benjamin G. Bitler¹, and Rugang Zhang^{1,7,*}

Combination of NUV-868 + olaparib increases double-strand DNA breaks (yH2AX) in an HR-proficient ovarian tumor model

HR-proficient Ovarian Cell Line Xenograft Tumor Volume

NUV-868-01 phase 1/1b study: monotherapy & combination

Phase 1 Dose Escalation

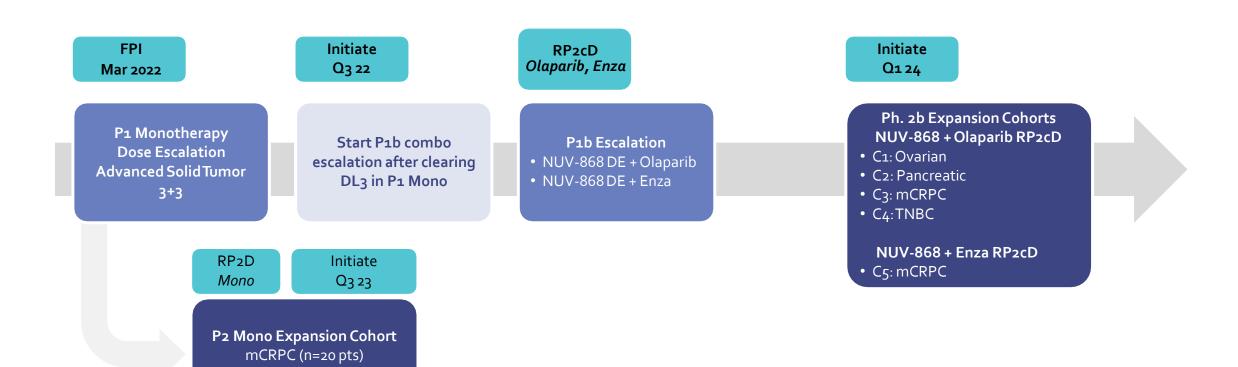
Primary Objective: Safety, Tolerability, RP2D

Advanced Solid Tumors

First Patient Dosed in Q1 2022

Phase 1b Combination Dose Escalation with Dose Backfill*

Primary Objective: Safety, Tolerability, RP2cD


Regimen 1: NUV-868 + Olaparib
Ovarian, Pancreatic,
mCRPC, TNBC

Regimen 2: NUV-868 + Enzalutamide mCRPC

NUV-868-01 protocol also contains Phase2/Phase 2b to explore monotherapy in mCRPC & combination efficacy in multiple solid tumors

NUV-868 will be explored in solid tumors as monotherapy and in combination with Standard of Care (SOC)

DE: Dose Escalation

P1: Phase 1 (monotherapy dose escalation)

P1b: Phase 1b (combination regimen escalation; various tumor types and combination partners)

RP2D: Recommended Phase 2 Dose

RP2cD: Recommended Phase 2 Combination Dose

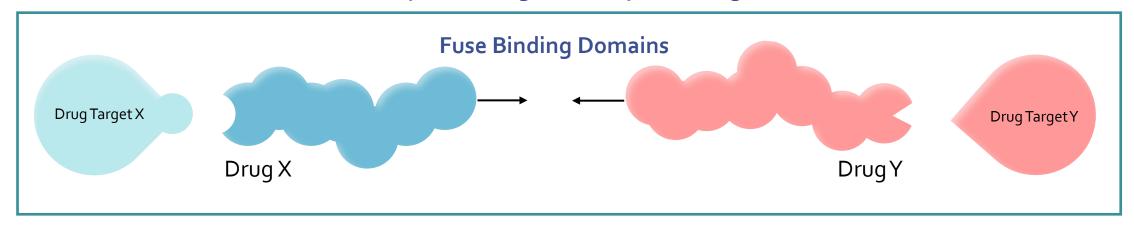
Drug-Drug Conjugate (DDC) Platform

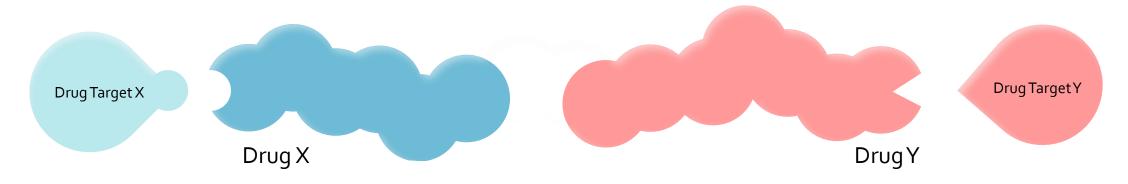
Solid Tumors

Clinical Candidate Selection By Year End 2022

The drug-drug conjugate (DDC) platform is a potentially revolutionary advance beyond ADCs

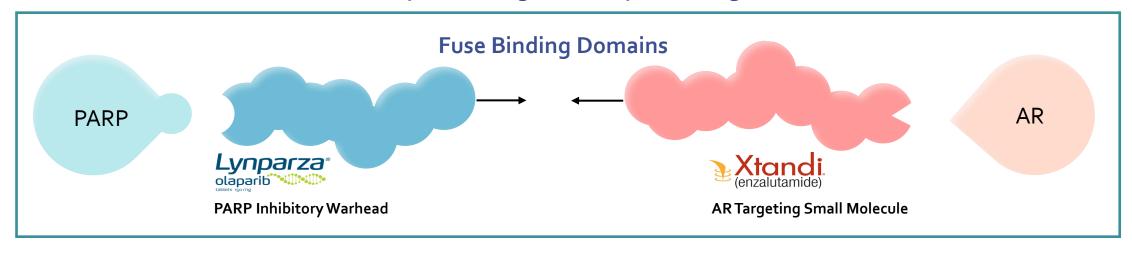
Antibody-Drug Conjugates Improves therapeutic index vs. untargeted warhead IV delivery Limited to cell-surface targets Drug-Drug Complex and expensive Conjugates manufacturing Antibody-Drug Conjugate

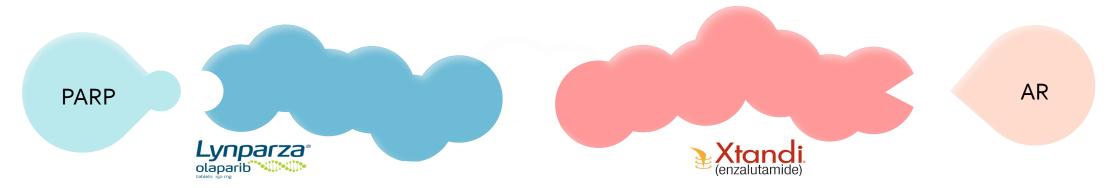

Drug-Drug Conjugates


- Tissue-selective targeting improves therapeutic index vs. untargeted warhead
- Oral or IV delivery
- Binds intracellular and cell membrane targets
- ✓ Highly cell permeable
- Simpler and less expensive to manufacture

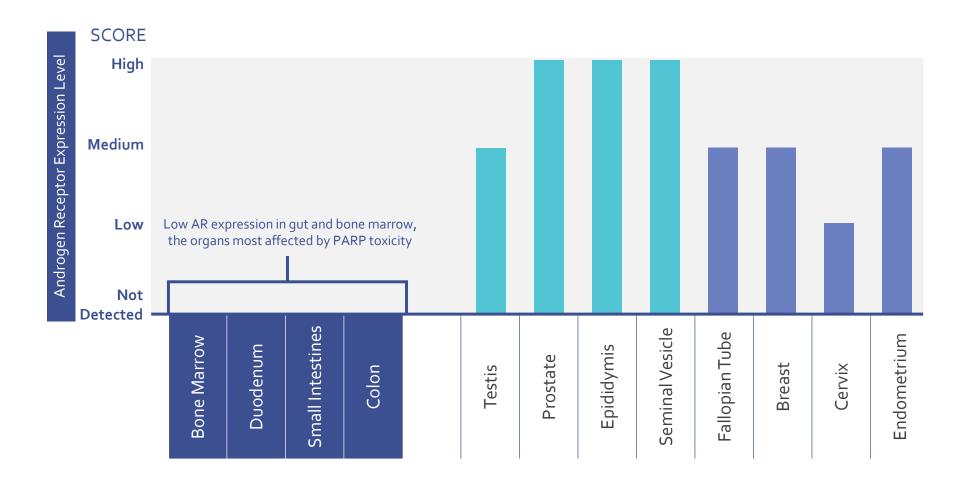
DDCs are designed to bind TWO different targets simultaneously

Two Separate Drugs/Two Separate Targets



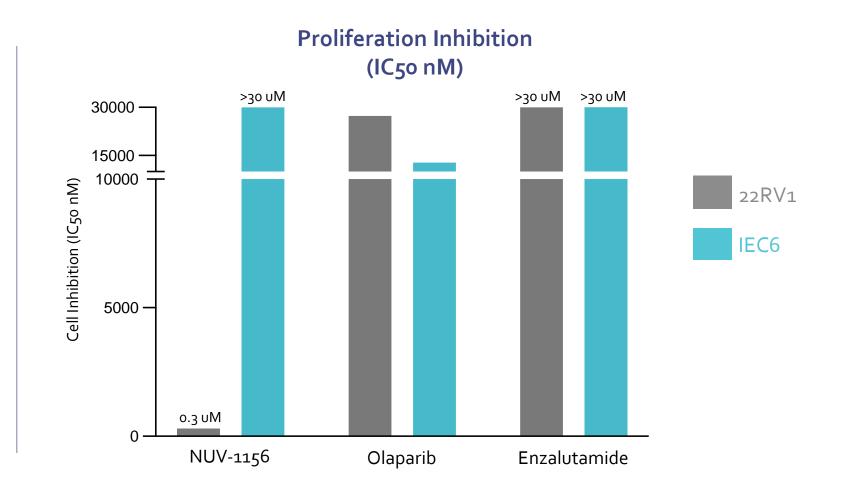


NUV-1156 is a novel drug-drug conjugate that targets AR and PARP

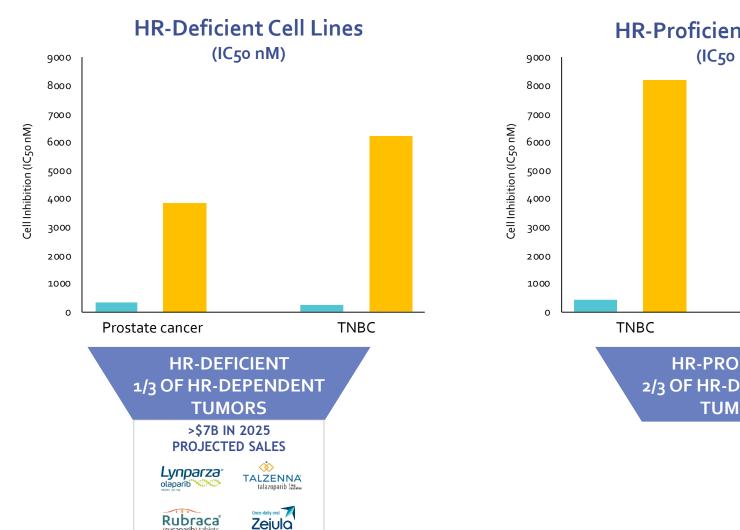

Two Separate Drugs/Two Separate Targets

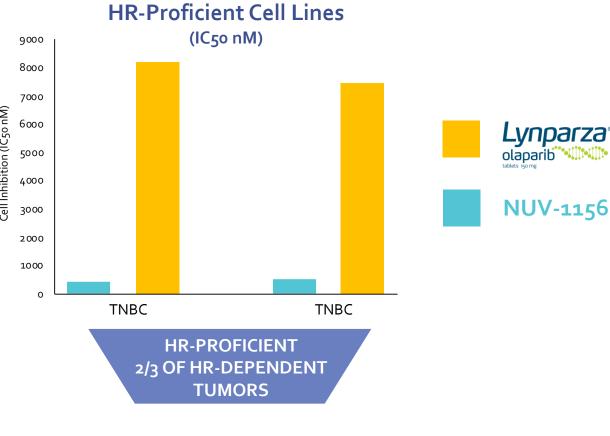
NUV-1156 targets high AR-expressing tissue like prostate cancer and avoids low AR-expressing tissue like bone marrow and GI tract

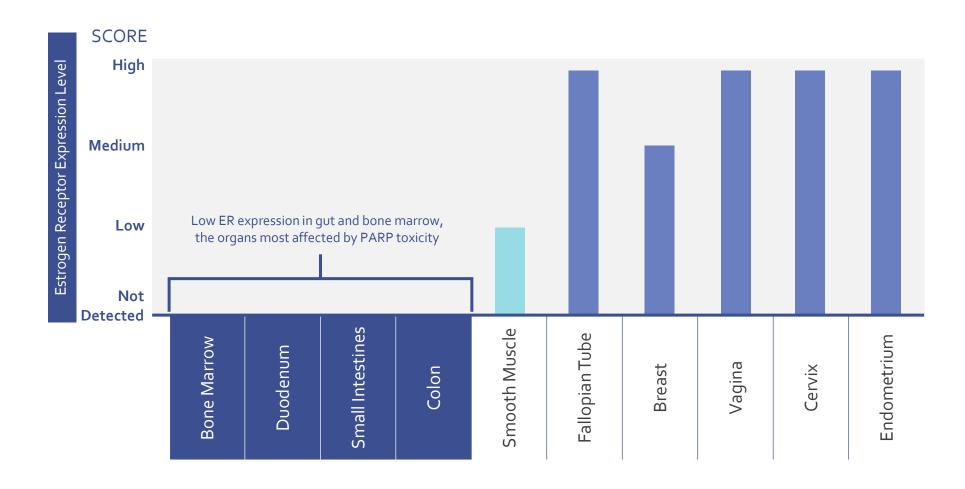
Modified from www.proteinatlas.org

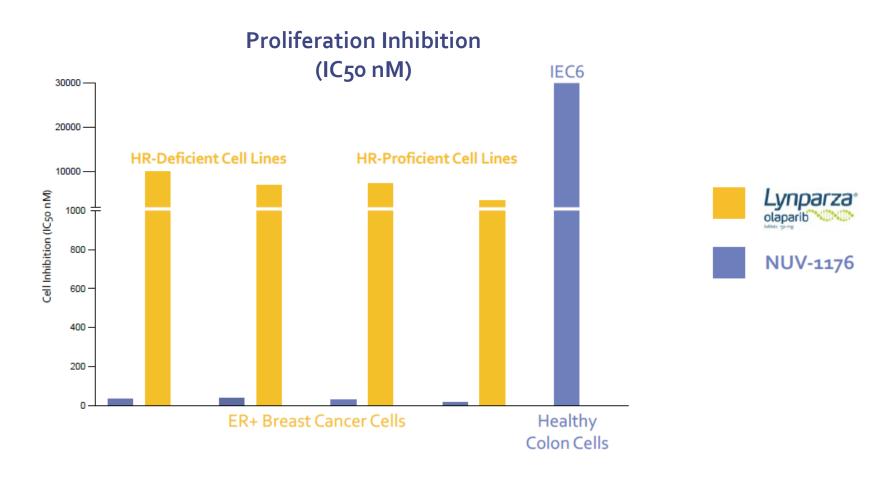

NUV-1156 DDC potently kills prostate cancer cells resistant to current Standards of Care

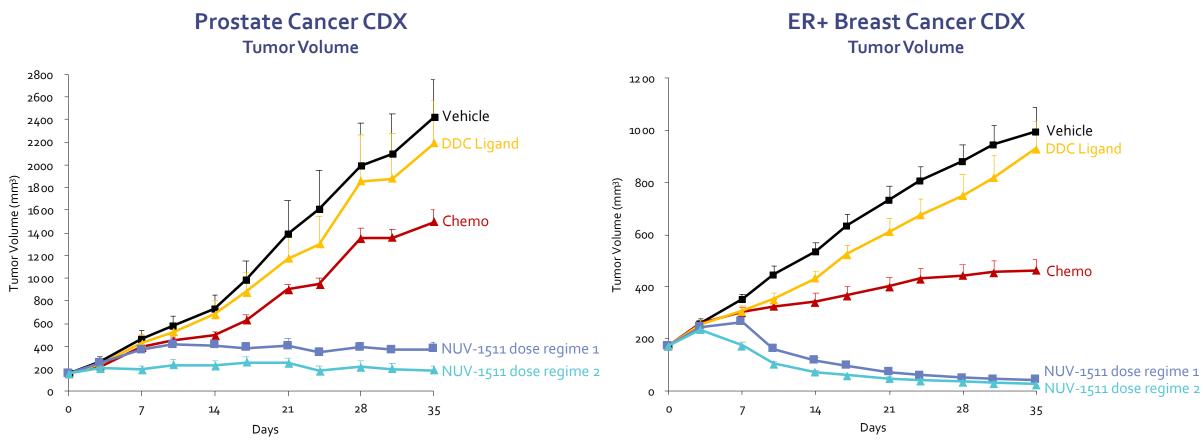
	Proliferation Inhibition IC ₅₀ (nM)	
Xtandi. (enzalutamide)	>30,000	
Lynparza® olaparib® Willim® tablets 150 mg	7844	
Xtandi. + Lynparza olaparib olaparib olaparib tablets 150 mg	6152	
NUV-1156 (PARP-AR DDC)	201	


NUV-1156 is >100-fold more potent at inhibiting cell growth in prostate cancer 22RV1 cells than in IEC6 gut epithelial cells


Approved PARP inhibitors have high rates of GI toxicity


Unlike current PARP inhibitors, NUV-1156 kills HR-deficient and HR-proficient cancer cell lines with equally high potency


ER protein expression is limited to female sex organs; Low ER expression in sites of PARP-related toxicity like bone marrow and GI tract


Modified from www.proteinatlas.org

NUV-1176, an ER-targeted DDC, potently kills both HR-D and HR-P ER+ breast cancer cells without killing healthy gut epithelial cells

NUV-1511, a DDC derivative of a widely used chemo agent, suppresses prostate and breast cancer growth in xenografts

Committed team tackling the greatest unmet needs in oncology

Experienced Biotech Leadership Team

Founded in 2018 by Dr. David Hung, previously the founder and CEO of Medivation and successful developer of major oncology drugs (XTANDI & TALZENNA)

Broad Wholly-Owned Pipeline

- Ongoing Phase 1/2 studies in brain, breast and prostate cancer for NUV-422, a CDK2/4/6 inhibitor
- First patient dosed in Phase 1 study of NUV-868, a BD2 selective BET inhibitor
- Advancing selection process of first clinical candidate from DDC program
- Comprehensive IP protection

Best-in-class Drug Candidate Profiles Leveraging and Improving Validated Drug Mechanisms

- Potential for better efficacy and tolerability
- Mechanisms that target multiple tumor types
- Potential for accelerated approval pathways

Strong Cash Position

- \$737.7 million as of March 31, 2022
- Enables a world-class drug development team to rapidly pursue clinical development of multiple portfolio therapeutic candidates

